Eötvös Effect: jawel, de aarde draait rond

Het Eötvös-effect is de verandering in waargenomen zwaartekrachtversnelling bij het verplaatsen van oost naar west of omgekeerd. Een object weegt meer wanneer het naar het westen beweegt dan wanneer het stilstaat of naar het oosten beweegt.

Het effect werd ontdekt door de geofysicus Loránd Eötvös, die in de jaren 1900 het verschil opmerkte in zwaartekrachtmetingen op bewegende schepen. Hij ontdekte dat zijn metingen lager waren wanneer de boot naar het oosten voer en hoger wanneer deze naar het westen ging. Hij identificeerde dit voornamelijk als een gevolg van de rotatie van de aarde.

De rotatie van de aarde veroorzaakt een centrifugale versnelling, een schijnkracht weg van de rotatieas van de aarde. Langs de evenaar is de centrifugale versnelling het grootst en bedraagt ongeveer 0,03 m/s².

Naar het oosten reizend beweegt een object in dezelfde richting als de rotatie van de aarde en krijgt het dan ook een grotere absolute snelheid, wat op zich dan weer resulteert in een hogere centrifugale versnelling.

Omgekeerd betekent een westwaarts verplaatsing dat je je tegen de rotatie van de aarde in beweegt. De snelheden heffen elkaar op en resulteren in een kleinere absolute snelheid met als resultaat een kleinere middelpuntvliedende versnelling.

Ondertussen blijft de valversnelling van de aarde in beide gevallen constant. Het verschil in centrifugale versnelling bij oost- en westwaartse beweging resulteert in een klein doch meetbaar verschil in neerwaartse versnelling. Een object weegt meer wanneer het naar het westen beweegt en minder wanneer het naar het oosten beweegt.

Een praktisch voorbeeld

Laten we eens kijken naar de berekening van een voorbeeld. We vliegen in een vliegtuig over de evenaar en nemen een gewicht van 1000 gram en een op zeeniveau gekalibreerde weegschaal. Wanneer we met een snelheid van 925 km/h en op een hoogte van 12,5 km vliegen, zal de weegschaal 991 gram aangeven in de richting van het oosten en 999 gram richting het westen. Er zal dus een verschil van 8 gram ontstaan als gevolg van het Eötvös-effect.

Bijkomend resulteert de hoogte van het vliegtuig in een kleinere valversnelling omdat het zich op kruishoogte verder van het zwaartepunt van de aarde bevindt.

Deze berekening werd gedaan met behulp van de online calculator ‘Centrifugal and Gravitational Acceleration in an Aircraft’ die terug te vinden is op de blog van Walter Bislin.

Een experiment

Referenties

De aarde is geen tennisbal

De massa van de aarde creëert een valversnelling met een waarde van 9,82 m/s² richting het midden van onze planeet. Deze versnelling wordt uitgeoefend op alle materie dat zich op het aardoppervlak bevindt. Anderzijds is er de middelpuntvliedende versnelling, een schijnkracht die een gevolg is van de rotatie van de aarde. Deze centrifugale versnelling bedraagt ter hoogte van de evenaar ongeveer 0,03 m/s² en gaat weg van het centrum van de aarde. De netto versnelling is dus ongeveer 9,79 m/s² richting het middelpunt van de aarde. Vandaar dat ook alles op de aarde ook effectief op de aarde blijft en niet weggeslingerd wordt richting oneindigheid.

Platte Aarders echter maken vaak een verkeerde vergelijking met een natte ronddraaiende tennisbal. Water op deze bal blijft niet ‘plakken’. Waarom zou het water op onze ronddraaiende aarde dit dan wel doen? Die draait toch ook rond? Conclusie: de aarde kan geen ronddraaiende bal zijn!
Wat weliswaar een verkeerde conclusie is.

Water blijft op het aardoppervlak liggen omdat de valversnelling van de aarde groter is dan de centrifugale versnelling die wordt gegenereerd door de roterende beweging. De aarde draait helemaal niet snel genoeg om een gelijkaardige centrifugale versnelling te veroorzaken zoals die bij de draaiende tennisbal.

Met behulp van Newtons gravitatiewet kunnen we vaststellen dat de valversnelling die door een tennisbal op een object op het oppervlak wordt uitgeoefend, ongeveer 0,00000000332 m/s² bedraagt. Gigantisch, niet? Aan de andere kant genereert de draaiende beweging een centrifugale versnelling van ongeveer 376 m/s², uitgaande van een toerental van 1.000 t/m. (Ter vergelijking: de backhand van Roger Federer spint een tennisbal tot 5.300 t/m). De netto versnelling is dus nog steeds ongeveer 376 m/s² weg van de bal. Hierdoor vliegt het water weg en blijft het niet ‘plakken’.

Een andere bedenking bij deze vergelijking is het feit dat het tennisbal-experiment is uitgevoerd onder de invloed van de zwaartekracht van de aarde, die verschillende grootteordes meer bedraagt dan deze van de tennisbal. Elk druppeltje water op de bal wordt veel meer aangetrokken door de aarde dan door de tennisbal. Als er toch water aan de tennisbal blijft hangen, is dit niet een gevolg van diens zwaartekracht, maar door de oppervlaktespanning van het water.

Enkele berekeningen

Voor de tennisbal:

  • diameter: 68,6 mm
  • massa: 58,5 g
  • hoeksnelheid: veronderstelde 1.000 t/m
  • middelpuntvliedende versnelling aan het oppervlak van de tennisbal: a = ω²r =  (((1.000 t/m) × (2 × π))²) × (68,6 mm / 2) = 376,031928 m/s²
  • valversnelling aan het oppervlak van de tennisbal: g = GM/r² = G × 58,5 gr / (68,6 mm / 2)² = 3,32056743 × 10-9 m/s²

Voor de aarde:

  • diameter: 6.371 km
  • massa: 5,972 × 1024 kg
  • hoeksnelheid: 1/24 t/h
  • middelpuntvliedende versnelling aan het oppervlak van de aarde: a = ω²r = ((1 / (24 u) × 2π))² × (6.371 km) = 0,0336930136 m/s²
  • valversnelling aan het oppervlak van de aarde: g = GM/r² = G × 5,972 × 1024 kg / (6.371 km)² = 9,819649 m/s²