Gebogen rakettraject

Raketten vliegen niet loodrecht omhoog tot ze de dampkring verlaten maar volgen een gebogen traject wanneer ze zichzelf de ruimte in lanceren. Dit omdat hun doel niet alleen is om daar te geraken, maar ook om in een baan om de aarde terecht te komen en te blijven. In een baan om de aarde hebben raketten voldoende snelheid om de zwaartekracht van de aarde tegen te gaan en hebben ze niet veel energie nodig om in die baan te blijven zonder neer te storten. Maar om een baan om de aarde te bereiken, moet een raket een voldoende hoge horizontale snelheid bekomen.

Platte Aarders beweren dat het gebogen traject van een raketlancering ons vertelt dat geen enkele raket ooit de ruimte heeft bereikt. Ze hebben het mis. Het gebogen traject is een manier voor raketten om in een baan om de aarde terecht te komen.

Zo ver is de ruimte trouwens niet. Hoger dan 80 à 100 km boven het aardoppervlak wordt reeds als de ruimte beschouwd. Het bereiken van de ruimte is het gemakkelijkste deel. Een voldoende hoge horizontale snelheid bereiken om niet neer te storten echter is een ander paar mouwen.

Door rond de aarde te draaien, kan een ruimtevaartuig zijn stuwraketten stopzetten en daar heel lang blijven. Op basis van een simulatie zal een object van 100 kg met een doorsnede van 1 m², indien geplaatst in een baan ter hoogte van 300 km, pas na 46 dagen op de aarde neerstorten. En dit zonder extra brandstof te gebruiken.

De meest efficiënte manier om een stabiele baan te bereiken, is door aanvankelijk recht omhoog te vliegen om de luchtweerstand te verminderen, vervolgens langzaam te kantelen en steeds minder steil te vliegen totdat de raket evenwijdig vliegt aan het aardoppervlak.

Als de raket recht omhoog zou (blijven) schieten, zou hij sneller de ruimte bereiken met minder energie. Maar op deze manier is er niet genoeg horizontale snelheid om in een baan terecht te komen. De raket zou continu energie moeten verbruiken om daar te blijven. En zodra de brandstof op is, zal de raket maar al te snel weer bij zijn vertrekpunt zijn.

Dit is geen ‘rocket science’.

Ruimtevaart en de temperatuur in de thermosfeer

De thermosfeer is een laag van onze atmosfeer en bevindt zich tussen een hoogte van ongeveer 95 km en 600 km. Deze laag wordt ‘thermosfeer’ genoemd omdat de temperatuur toeneemt met de hoogte en deze kan wel 2500°C bereiken. De luchtdichtheid is er echter erg laag; tot het punt dat warmtegeleiding praktisch niet optreedt. Voorwerpen in de thermosfeer voelen dan ook koud aan.

Platte Aarders ontdekten dat de temperatuur in de thermosfeer 2500°C kan bereiken en voegden dit toe aan hun lijstje van redenen waarom satellieten niet bestaan. Ze zouden immers smelten! De andere informatie die minstens even belangrijk is, negeren ze echter met plezier: dat de luchtdichtheid er ook veel lager is.

De massa van de atmosfeer van de aarde is geconcentreerd in de onderste lagen, het dichtst bij de aarde zelf. 90% van alle massa bevindt zich onder de 16 km. 99,9999% zit onder de 100 km. De thermosfeer zelf begint vanaf 95 km en eindigt op ongeveer 600 km. Slechts 0,002% van de massa van de atmosfeer van de aarde bevindt zich in de thermosfeer.

Warmteoverdracht is recht evenredig met het verschil in temperatuur en massa. Luchtmoleculen in de thermosfeer hebben soms een 10 keer hogere temperatuur dan aan het aardoppervlak. Maar tegelijkertijd is de dichtheid 10.000.000.000.000 keer lager. Hierdoor heeft het minder energie per volume-eenheid in vergelijking met ons lichaam, waardoor de thermosfeer koud aanvoelt en een gewone thermometer zal onder 0°C aangeven.

Deze situatie kunnen we vergelijken met het moment wanneer we getroffen worden door hete frituurolie. Meestal is dit geen groot probleem. De opspattende olie heeft dezelfde temperatuur als de kokende olie in de ketel en kan tot 200°C bereiken! Maar tegelijkertijd heeft het weinig massa, in tegenstelling tot de olie in de pan. Steek dus nooit je hand in de frietketel, maar panikeer niet bij een paar spatjes.

De stoom in sommige sauna’s kan 100°C bereiken, net als kokend water. Maar we voelen veel minder warmte van een heerlijke sauna dan van niet zo heerlijk kokend water. De reden is dat de dichtheid van stoom veel lager is dan die van water in vloeibare vorm. Alweer een wijze raad: ga nooit ontspannen in een bad kokend water. Kies voor de sauna.

Nog eentje om het af te leren? Vonken die worden geproduceerd door vuurstenen, slijpschijven of feeststerretjes kunnen temperaturen tot 1600°C bereiken! Maar voor ons vormen ze meestal geen groot probleem omdat hun massa minuscuul is in vergeleken met die van ons lichaam.

Missies naar de maan na Apollo

‘Na Apollo was er nooit meer een missie naar de maan. Dit betekent dat de Apollo-missies nep zijn en dat we nooit naar de maan zijn gegaan. ‘

Dat is althans hoe de Platte Aarde-aanhangers denken over de Amerikaanse Apollo-missies (en missies naar de maan in het algemeen). Omdat ze denken dat er na de Apollo-missies nooit meer ruimtevluchten naar de maan zijn geweest, concluderen ze dat het Apollo-programma in scène is gezet en nooit is gebeurd.

Is dat zo? Blijkbaar niet. Hoewel op het moment dat dit artikel werd geschreven Apollo nog steeds de enige missie is die mensen naar de maan heeft gebracht, betekent dit niet dat er daarna geen missies meer zijn geweest.

Het Apollo-programma was niet alleen een wetenschappelijke missie, maar ook een politieke. De Verenigde Staten waren verwikkeld in een koude oorlog met de Sovjet-Unie. Beide landen waren op alle mogelijke manieren in hevige concurrentie om de meeste invloed op andere landen te krijgen. De Space Race was aan de gang en de USSR had de VS reeds tweemaal verslagen door zowel de eerste satelliet te lanceren als de eerste mens de ruimte in te sturen. Als reactie op deze tegenslagen is het Apollo-programma ontstaan.

In de eerste plaats brachten politieke redenen dus de eerste mensen naar de maan. Dit was een massaal bekend evenement en werd live wereldwijd op televisie uitgezonden. Maar als het alleen om wetenschappelijke redenen was, zijn er veel dingen die kunnen worden gedaan zonder mensen daadwerkelijk naar de maan te sturen. Het zou ook veel goedkoper zijn en veel minder risico’s met zich meebrengen.

Na Apollo zijn er talloze missies naar de maan geweest; echter zonder mensen daarheen te sturen en zeker zonder de massale publiciteit. En niet alleen de VS / Rusland, maar ook andere landen deden mee. Europa, Japan, India en China hadden elk hun missies naar de maan.