Oblate sferoïde en foto’s vanuit de ruimte

Mount Everest is niet de hoogste berg ter wereld. Toch niet als we meten vanaf het centrum van de aarde. Dan is de top van Mount Chimborazo in Ecuador ongeveer twee kilometer ‘hoger’ dan Everest.

Dit komt omdat onze aarde niet perfect bolvormig is. De diameter tussen de twee polen is namelijk kleiner dan deze ter hoogte van de evenaar. Deze vorm heet een oblate of afgeplatte sferoïde. Dit feit wordt echter in twijfel getrokken door Platte Aarders. Volgens hen geeft elk beeld vanuit de ruimte de aarde weer als een perfecte bol en nooit als een afgeplatte sferoïde. Dit is voor hen dan ook een reden om te beweren dat wetenschappers tegen ons gelogen hebben.

“Oblate sferoïde en foto’s vanuit de ruimte” verder lezen

Waarom we geen satellieten zien op foto’s vanuit het ISS

“Waarom zien we geen satellieten op foto’s genomen vanuit het ISS, of vanuit de ruimte in het algemeen?”

Dit is een terugkerende vraag binnen de Platte Aarde-gemeenschap, meestal gesteld zonder een antwoord te verwachten. Ze gaan ervan uit dat een antwoord onmogelijk is aangezien volgens hen satellieten of het volledige concept ‘ruimte’ een leugen is.

Maar wees gerust, de foto’s zijn echt. Satellieten zijn simpelweg niet zichtbaar op deze foto’s omdat ze te ver van elkaar en van de camera verwijderd zijn.

“Waarom we geen satellieten zien op foto’s vanuit het ISS” verder lezen

Hoe raketmotoren werken in het luchtledige

Vogels vliegen door met hun vleugels door de lucht te slaan, vissen zwemmen door hun vinnen en staart tegen het water te duwen en de mens zet zich af tegen de grond om vooruit te komen. Maar hoe komen raketten dan vooruit in het luchtledige?

Raketten kunnen in een vacuüm versnellen, vertragen en manoeuvreren door gebruik te maken van de natuurwet die wordt beschreven in de bewegingswetten van Newton alsook in de wet van behoud van impuls.

Een raketmotor werkt door iets met massa ‘uit te spuwen’ met een zeer hoge snelheid. Deze massa wordt ‘propellant’ genoemd. Het ruimtevaartuig beweegt in de tegenovergestelde richting waaruit het verbrande propellant vrijkomt. Dit is te vergelijken met de terugslag van een wapen als gevolg van een snel wegvliegende kogel.

Raketten bestaan grotendeels uit brandstof. Hier schuilt een ander probleem dat vaak door Platte Aarders naar voren wordt geschoven. In een vacuüm is er geen lucht en dus ook geen zuurstof. Er wordt gesteld dat het onmogelijk is om in het luchtledige verbranding te krijgen vanwege deze afwezigheid. Om dit probleem op te lossen, moeten raketten naast brandstof ook een eigen oxidator (zuurstof) meenemen.

Raketten kunnen ook elektrisch worden aangedreven door ionenmotoren. In ionenmotoren kunnen raketten via zonnepanelen energie van de zon gebruiken en hiermee de motor aandrijven. Het ‘stuwgas’ moet echter nog steeds vervoerd worden. Een populair stuwgas is xenongas. Het vermogen dat wordt opgewekt door ionenmotoren is relatief klein en lanceringen vanaf het aardoppervlak zijn dus onmogelijk met dit soort motor. Maar ze kunnen ingezet worden nadat het ruimtevaartuig zich in een baan om de aarde bevindt, waar slechts een relatief kleine hoeveelheid kracht nodig is om het ruimtevaartuig in de gewenste baan of positie te brengen. Indien een ionenmotor langdurig wordt ingezet kan een enorme snelheid bekomen worden met weinig ‘brandstof’. De snelheid van bijvoorbeeld de satelliet Deep Space 1 nam toe met 4,4 km per seconde door slechts 81,5 kg af te vuren!

Referencies

Credit

  • Gebruikte afbeelding: WALL-E, © Disney & Pixar.

Gebogen rakettraject

Raketten vliegen niet loodrecht omhoog tot ze de dampkring verlaten maar volgen een gebogen traject wanneer ze zichzelf de ruimte in lanceren. Dit omdat hun doel niet alleen is om daar te geraken, maar ook om in een baan om de aarde terecht te komen en te blijven. In een baan om de aarde hebben raketten voldoende snelheid om de zwaartekracht van de aarde tegen te gaan en hebben ze niet veel energie nodig om in die baan te blijven zonder neer te storten. Maar om een baan om de aarde te bereiken, moet een raket een voldoende hoge horizontale snelheid bekomen.

Platte Aarders beweren dat het gebogen traject van een raketlancering ons vertelt dat geen enkele raket ooit de ruimte heeft bereikt. Ze hebben het mis. Het gebogen traject is een manier voor raketten om in een baan om de aarde terecht te komen.

Zo ver is de ruimte trouwens niet. Hoger dan 80 à 100 km boven het aardoppervlak wordt reeds als de ruimte beschouwd. Het bereiken van de ruimte is het gemakkelijkste deel. Een voldoende hoge horizontale snelheid bereiken om niet neer te storten echter is een ander paar mouwen.

Door rond de aarde te draaien, kan een ruimtevaartuig zijn stuwraketten stopzetten en daar heel lang blijven. Op basis van een simulatie zal een object van 100 kg met een doorsnede van 1 m², indien geplaatst in een baan ter hoogte van 300 km, pas na 46 dagen op de aarde neerstorten. En dit zonder extra brandstof te gebruiken.

De meest efficiënte manier om een stabiele baan te bereiken, is door aanvankelijk recht omhoog te vliegen om de luchtweerstand te verminderen, vervolgens langzaam te kantelen en steeds minder steil te vliegen totdat de raket evenwijdig vliegt aan het aardoppervlak.

Als de raket recht omhoog zou (blijven) schieten, zou hij sneller de ruimte bereiken met minder energie. Maar op deze manier is er niet genoeg horizontale snelheid om in een baan terecht te komen. De raket zou continu energie moeten verbruiken om daar te blijven. En zodra de brandstof op is, zal de raket maar al te snel weer bij zijn vertrekpunt zijn.

Dit is geen ‘rocket science’.

Ruimtevaart en de temperatuur in de thermosfeer

De thermosfeer is een laag van onze atmosfeer en bevindt zich tussen een hoogte van ongeveer 95 km en 600 km. Deze laag wordt ‘thermosfeer’ genoemd omdat de temperatuur toeneemt met de hoogte en deze kan wel 2500°C bereiken. De luchtdichtheid is er echter erg laag; tot het punt dat warmtegeleiding praktisch niet optreedt. Voorwerpen in de thermosfeer voelen dan ook koud aan.

Platte Aarders ontdekten dat de temperatuur in de thermosfeer 2500°C kan bereiken en voegden dit toe aan hun lijstje van redenen waarom satellieten niet bestaan. Ze zouden immers smelten! De andere informatie die minstens even belangrijk is, negeren ze echter met plezier: dat de luchtdichtheid er ook veel lager is.

De massa van de atmosfeer van de aarde is geconcentreerd in de onderste lagen, het dichtst bij de aarde zelf. 90% van alle massa bevindt zich onder de 16 km. 99,9999% zit onder de 100 km. De thermosfeer zelf begint vanaf 95 km en eindigt op ongeveer 600 km. Slechts 0,002% van de massa van de atmosfeer van de aarde bevindt zich in de thermosfeer.

Warmteoverdracht is recht evenredig met het verschil in temperatuur en massa. Luchtmoleculen in de thermosfeer hebben soms een 10 keer hogere temperatuur dan aan het aardoppervlak. Maar tegelijkertijd is de dichtheid 10.000.000.000.000 keer lager. Hierdoor heeft het minder energie per volume-eenheid in vergelijking met ons lichaam, waardoor de thermosfeer koud aanvoelt en een gewone thermometer zal onder 0°C aangeven.

Deze situatie kunnen we vergelijken met het moment wanneer we getroffen worden door hete frituurolie. Meestal is dit geen groot probleem. De opspattende olie heeft dezelfde temperatuur als de kokende olie in de ketel en kan tot 200°C bereiken! Maar tegelijkertijd heeft het weinig massa, in tegenstelling tot de olie in de pan. Steek dus nooit je hand in de frietketel, maar panikeer niet bij een paar spatjes.

De stoom in sommige sauna’s kan 100°C bereiken, net als kokend water. Maar we voelen veel minder warmte van een heerlijke sauna dan van niet zo heerlijk kokend water. De reden is dat de dichtheid van stoom veel lager is dan die van water in vloeibare vorm. Alweer een wijze raad: ga nooit ontspannen in een bad kokend water. Kies voor de sauna.

Nog eentje om het af te leren? Vonken die worden geproduceerd door vuurstenen, slijpschijven of feeststerretjes kunnen temperaturen tot 1600°C bereiken! Maar voor ons vormen ze meestal geen groot probleem omdat hun massa minuscuul is in vergeleken met die van ons lichaam.

Google Maps, GPS en mobiele data

Google Maps en vergelijkbare apps gebruiken satellietnavigatie – zoals GPS – om de locatie van het apparaat te bepalen. De apps gebruiken ook mobiele data of andere internetverbindingen om kaart- en routegegevens die geen deel uitmaken van het GPS- of satellietnavigatiesysteem te verkrijgen.

Sommige Platte Aarders merkten op dat Google Maps niet volledig functioneert wanneer de mobiele ontvangst slecht of volledig weggevallen is. Ze concludeerden dat GPS-signalen worden verzonden door zendmasten en niet door satellieten. In werkelijkheid zijn de kaart- en route-informatie geen onderdeel van het GPS-signaal.

GPS (Global Positioning System) is een navigatiesysteem dat tot doel heeft locatie- en tijdinformatie aan een GPS-ontvanger overal op aarde te verstrekken, zolang er een onbelemmerde zichtlijn naar de gebruikte satellieten is. Het GPS-systeem kan zijn gebruikers alleen hun lengtegraad, breedtegraad, hoogte en tijd doorsturen. GPS is bovendien slechts een van de vele satellietnavigatiesystemen die gebruikt worden. Er zijn andere, zoals GLONASS, Beidou en Galileo, die op dezelfde manier werken als GPS.

De apps kunnen, naast positiebepaling, ook kaarten en routes weergeven en je bijvoorbeeld vertellen welke restaurants en benzinestations er in de buurt zijn. Deze functies komen niet overeen met wat het zuivere GPS-signaal biedt. Google Maps haalt deze informatie van hun servers en heeft een actieve gegevensverbinding nodig om de benodigde gegevens te downloaden. Dit is de reden waarom Google Maps niet volledig functioneert zonder een goede data-ontvangst.

Zonder mobiele data is GPS zelf nog steeds erg bruikbaar. Ter verificatie kunnen we een eenvoudige GPS-app gebruiken zonder alle functies van een complete navigatie-app zoals Google Maps.

De verwarring omtrent de term ‘GPS’ ontstaat omdat alle smartphones tegenwoordig zijn uitgerust met een GPS-ontvanger. Wanneer iemand naar ‘een GPS’ verwijst, bedoelt men meestal de app, zoals Google Maps. In werkelijkheid zijn de apps meer dan alleen GPS, en GPS zelf is niet exclusief voor smartphones. Voordat er smartphones waren, stonden vrijwel alle GPS-apparaten op zichzelf, zonder internetverbinding.